Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(18): e2311305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270280

RESUMO

Semitransparent organic photovoltaics (ST-OPVs) offer promising prospects for application in building-integrated photovoltaic systems and greenhouses, but further improvement of their performance faces a delicate trade-off between the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, the authors take advantage of coupling plasmonics with the optical design of ST-OPVs to enhance near-infrared absorption and hence simultaneously improve efficiency and visible transparency to the maximum extent. By integrating core-bishell PdCu@Au@SiO2 nanotripods that act as optically isotropic Lambertian sources with near-infrared-customized localized surface plasmon resonance in an optimal ternary PM6:BTP-eC9:L8-BO-based ST-OPV, it is shown that their interplay with a multilayer optical coupling layer, consisting of ZnS(130 nm)/Na3AlF6(60 nm)/WO3(100 nm)/LaF3(50 nm) identified from high-throughput optical screening, leads to a record-high PCE of 16.14% (certified as 15.90%) along with an excellent AVT of 33.02%. The strong enhancement of the light utilization efficiency by ≈50% as compared to the counterpart device without optical engineering provides an encouraging and universal pathway for promoting breakthroughs in ST-OPVs from meticulous optical design.

2.
Langmuir ; 39(12): 4216-4223, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926905

RESUMO

The process of convectively self-assembling particles in films suffers from low reproducibility due to its high dependency on particle concentration, as well as a variety of interactions and physical parameters. Inhomogeneities in flow rates and instabilities at the air-liquid interface are mostly responsible for reproducibility issues. These problems are aggravated by adding multiple components to the dispersion, such as binary solvent mixtures or surfactant/polymer additives, both common approaches to control stick-slip behavior. When an additive is used, not only does it change the surface tension, but also the viscosity and the evaporation rate. Worse yet, gradients in these three properties can form, which then lead to Marangoni currents. Here, we use a series of alcohols to study the role of viscosity independently of other solvent properties, to show its impact on stick-slip behavior and interband distances. We show that mixtures of glycerol and alcohol or poly(acrylic acid) and alcohol lead to more complex patterning. Marangoni currents are not always observed in co-solvent systems, being dependent on the rate of solvent evaporation. To produce homogeneous particle assemblies and control stick-slip behavior, gradients must be avoided, and the surface tension and viscosity need both be carefully controlled.

3.
ACS Nano ; 17(7): 6362-6372, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976862

RESUMO

The nanostructures of natural species offer beautiful visual appearances with saturated and iridescent colors, and the question arises whether we can reproduce or even create unique appearances with man-made metasurfaces. However, harnessing the specular and diffuse light scattered by disordered metasurfaces to create attractive and prescribed visual effects is currently inaccessible. Here, we present an interpretive, intuitive, and accurate modal-based tool that unveils the main physical mechanisms and features defining the appearance of colloidal disordered monolayers of resonant meta-atoms deposited on a reflective substrate. The model shows that the combination of plasmonic and Fabry-Perot resonances offers uncommon iridescent visual appearances, differing from those classically observed with natural nanostructures or thin-film interferences. We highlight an unusual visual effect exhibiting only two distinct colors and theoretically investigate its origin. The approach can be useful in the design of visual appearance with easy-to-make and universal building blocks having a large resilience to fabrication imperfections and potential for innovative coatings and fine-art applications.

4.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770575

RESUMO

We describe a new approach to making ultrathin Ag nanoshells with a higher level of extinction in the infrared than in the visible. The combination of near-infrared active ultrathin nanoshells with their isotropic optical properties is of interest for energy-saving applications. For such applications, the morphology must be precisely controlled, since the optical response is sensitive to nanometer-scale variations. To achieve this precision, we use a multi-step, reproducible, colloidal chemical synthesis. It includes the reduction of Tollens' reactant onto Sn2+-sensitized silica particles, followed by silver-nitrate reduction by formaldehyde and ammonia. The smooth shells are about 10 nm thick, on average, and have different morphologies: continuous, percolated, and patchy, depending on the quantity of the silver nitrate used. The shell-formation mechanism, studied by optical spectroscopy and high-resolution microscopy, seems to consist of two steps: the formation of very thin and flat patches, followed by their guided regrowth around the silica particle, which is favored by a high reaction rate. The optical and thermal properties of the core-shell particles, embedded in a transparent poly(vinylpyrrolidone) film on a glass substrate, were also investigated. We found that the Ag-nanoshell films can convert 30% of the power of incident near-infrared light into heat, making them very suitable in window glazing for radiative screening from solar light.

8.
Nanoscale ; 14(9): 3324-3345, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35174843

RESUMO

Monolayers of assembled nano-objects with a controlled degree of disorder hold interest in many optical applications, including photovoltaics, light emission, sensing, and structural coloration. Controlled disorder can be achieved through either top-down or bottom-up approaches, but the latter is more suited to large-scale, low-cost fabrication. Disordered colloidal monolayers can be assembled through evaporatively driven convective assembly, a bottom-up process with a wide range of parameters impacting particle placement. Motivated by the photonic applications of such monolayers, in this review we discuss the quantification of monolayer disorder, and the assembly methods that have been used to produce them. We review the impact of particle and solvent properties, as well as the use of substrate patterning, to create the desired spatial distributions of particles.

9.
Mater Horiz ; 8(2): 565-570, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821272

RESUMO

We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.

10.
Sci Rep ; 11(1): 17831, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497277

RESUMO

Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.

11.
Nano Lett ; 21(5): 2046-2052, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33599504

RESUMO

The design and chemical synthesis of plasmonic nanoresonators exhibiting a strong magnetic response in the visible is a key requirement to the realization of efficient functional and self-assembled metamaterials. However, novel applications like Huygens' metasurfaces or mu-near-zero materials require stronger magnetic responses than those currently reported. Our numerical simulations demonstrate that the specific dodecahedral morphology, whereby 12 silver satellites are located on the faces of a nanosized dielectric dodecahedron, provides sufficiently large electric and magnetic dipolar and quadrupolar responses that interfere to produce so-called generalized Huygens' sources, fulfilling the generalized Kerker condition. Using a multistep colloidal engineering approach, we synthesize highly symmetric plasmonic nanoclusters with a controlled silver satellite size and show that they exhibit a strong forward scattering that may be used in various applications such as metasurfaces or perfect absorbers.

12.
Nanoscale Horiz ; 6(4): 311-318, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439184

RESUMO

Highly symmetrical gold nanocages can be produced with a controllable number of circular windows of either 2, 3, 4, 6 or 12 via an original fabrication route. The synthetic pathway includes three main stages: the synthesis of silica/polystyrene multipod templates, the regioselective seeded growth of a gold shell on the unmasked part of the silica surface and the development of gold nanocages by dissolving/etching the templates. Electron microscopy and tomography provide evidence of the symmetrical features of the as-obtained nanostructures. The optical properties of nanocages with 4 and 12 windows were measured at the single particle level by spatial modulation spectroscopy and correlated with numerical simulations based on finite-element modeling. The new multi-step synthesis approach reported here also allows the synthesis of rattle-like nanostructures through filling of the nanocages with a guest nano-object. With the potential to adjust the chemical composition, size and geometry of both the guest particle and the host cage, it opens new routes towards the fabrication of hollow nanostructures of high interest for a variety of applications including sensing devices, catalytic reactors and biomedicine.

13.
Nanoscale Adv ; 2(9): 3804-3808, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132760

RESUMO

By using 1,2-propanediol instead of the classic polyol solvent, ethylene glycol, ultra-long silver nanowires are obtained in only 1 h. These nanowires lead to transparent electrodes with a sheet resistance of 5 Ohms per sq at a transparency of 94%, one of the highest figures of merit for nanowire electrodes ever reported.

14.
Nanomaterials (Basel) ; 9(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226818

RESUMO

Silver nanowire (AgNW) transparent electrodes show promise as an alternative to indium tin oxide (ITO). However, these nanowire electrodes degrade in air, leading to significant resistance increases. We show that passivating the nanowire surfaces with small organic molecules of 11-mercaptoundecanoic acid (MUA) does not affect electrode transparency contrary to typical passivation films, and is inexpensive and simple to deposit. The sheet resistance of a 32 nm diameter silver nanowire network coated with MUA increases by only 12% over 120 days when exposed to atmospheric conditions but kept in the dark. The increase is larger when exposed to daylight (588%), but is still nearly two orders of magnitude lower than the resistance increase of unpassivated networks. The difference between the experiments performed under daylight versus the dark exemplifies the importance of testing passivation materials under light exposure.

15.
Sci Rep ; 8(1): 14136, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237426

RESUMO

Compared to the limited absorption cross-section of conventional photoactive TiO2 nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO2 shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO2@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO2. This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications.

16.
Chemistry ; 24(27): 6917-6921, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29534315

RESUMO

Original titania nanocages are fabricated from sacrificial silica/polystyrene tetrapod-like templates. Here the template synthesis, titania deposition and nanocage development through polystyrene dissolution and subsequent silica etching are described. Discussion about the competitive deposition of titania on the biphasic templates is particularly emphasized. The morphology of the nanocages is investigated by TEM, STEM, EDX mapping and electron tomography.

17.
Nanotoxicology ; 10(3): 322-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26618487

RESUMO

To address the impact of cadmium sulfide nanoparticles (CdS NPs) in freshwater ecosystems, aquatic oligochaete Tubifex tubifex were exposed through the sediment to a low dose (0.52 mg of 8 nm in size of CdS NPs/kg) for 20 days using microcosms. Cadmium (Cd) was released from the CdS NPs-contaminated sediment to the water column, and during this period the average concentrations of Cd in the filtered water fraction were 0.026 ± 0.006 µg/L in presence of oligochaetes. Similar experiments with microparticular CdS and cadmium chloride (CdCl2) were simultaneously performed for comparative purposes. CdS NPs exposure triggered various effects on Tubifex worms compared to control, microsized and ionic reference, including modification of genome composition as assessed using RAPD-PCR genotoxicity tests. Bioaccumulation levels showed that CdS NPs were less bioavailable than CdCl2 to oligochaetes and reached 0.08 ± 0.01 µg Cd/g for CdS NPs exposure versus 0.76 ± 0.3 µg Cd/g for CdCl2 exposure (fresh weight). CdS NPs altered worm's behavior by decreasing significantly the bioturbation activity as assessed after the exposure period using conservative fluorescent particulate tracers. This study demonstrated the high potential harm of the CdS nanoparticular form despite its lower bioavailability for Tubifex worms.


Assuntos
Comportamento Animal/efeitos dos fármacos , Compostos de Cádmio/toxicidade , DNA/efeitos dos fármacos , Sedimentos Geológicos/química , Nanopartículas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/genética , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Disponibilidade Biológica , Cádmio/análise , Cloreto de Cádmio/farmacocinética , Cloreto de Cádmio/toxicidade , Compostos de Cádmio/química , Compostos de Cádmio/farmacocinética , DNA/genética , Ecossistema , Ecotoxicologia , Água Doce/química , Mutagênese/efeitos dos fármacos , Nanopartículas/química , Técnica de Amplificação ao Acaso de DNA Polimórfico , Sulfetos/química , Sulfetos/farmacocinética , Poluentes Químicos da Água/química
18.
Faraday Discuss ; 181: 139-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25920418

RESUMO

Silica particles with a controlled number of entropic patches, i.e. dimples, are synthesized through the growth of the silica core of binary multipods that have been produced by a seeded-growth emulsion polymerization reaction. Transmission electron microscopy studies indicate that the silica surface conforms to the shape of the polystyrene (PS) nodules of the multipods while growing, allowing good control of the final shape of the dimpled silica particles. The PS nodules are also used as protecting masks to regioselectively graft amino groups, as revealed by the adsorption of gold markers. After dissolution of the PS nodules, some polymer chains remain grafted onto the silica surface, forming organic bumps. These residues are also selectively functionalized, leading to silica particles with both entropic and enthalpic patches.

19.
Nanotoxicology ; 9(1): 71-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24559428

RESUMO

Increasing use of metallic nanomaterials is likely to result in release of these particles into aquatic environments; nevertheless it is unclear whether these materials present a hazard to aquatic organisms. The impact of contaminated sediment containing 14-nm gold nanoparticles (AuNPs) was investigated in the zebrafish Danio rerio exposed for 20 days to two concentrations, 16 and 55 µg/g dry weight. AuNPs were released from the sediment to the water column, and during this period the mean concentrations of AuNP in the filtered water fraction were 0.25 ± 0.05 and 0.8 ± 0.1 µg/L, respectively. A similar experiment with ionic gold contamination was simultaneously performed to obtain a positive control. AuNP exposure triggered various effects in fish tissues including modifications of genome composition, shown using a random amplified polymorphic DNA-PCR genotoxicity test. Expression of genes involved in oxidative stress, mitochondrial metabolism, detoxification and DNA repair were also modulated in response to AuNP contamination. Gold altered neurotransmission, since brain acetylcholine esterase activity increased for both tested doses of AuNP but not for ionic gold. Gold accumulation in fish tissues demonstrated the lower bioavailability of AuNP compared to ionic Au, and underlined the higher toxic potential of the nanoparticle form.


Assuntos
Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Química Encefálica/efeitos dos fármacos , Dano ao DNA , Expressão Gênica/efeitos dos fármacos , Sedimentos Geológicos/química , Ouro/química , Ouro/farmacocinética , Nanopartículas Metálicas/química , Músculos/química , Músculos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Distribuição Tecidual , Poluentes Químicos da Água/química , Poluentes Químicos da Água/farmacocinética
20.
Langmuir ; 30(5): 1424-34, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24483291

RESUMO

We report an improved synthesis of colloidal Ag(n) nanoprisms using carboxyl compounds (citrate or succinate) and long chain macromolecules (polyvinylpyrrolidone (PVP)). The side-facet structure of the triangular nanostructure was determined in detail using electron tomography in scanning transmission mode (3D STEM) and HRTEM. It has been found that they are built up by {100} facets with a single parallel twin plane. The best conditions for producing uniform Ag nanoprisms with tunable sizes and high yields in the presence of carboxyl compounds additive system are described, and a growth mechanism is proposed. This approach provides also a route to synthesize Ag nanodisks and Au-Ag alloyed nanoprisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...